228-¢/

. N89-163807

Je 705 &

VoYt

Recent Trends Related to the Use of
Formal Methods in Software Engineering

Seren Prehn

Dansk Datamatik Center
Lundtoftevej 1C

DK-2800 Lyngby {Copenhagen)
Denmark

Abstract:

An account is given of some recent developments and trends related to the deve:i-
opment and use of formal methods in software engineering. The paper focuses on
ongoing activities in Europe, since there seems to be a notable difference in
attitude towards industrial usage of formal methods in Europe and in the U.S.

A more detailed account is given of the currently most widespread formal metnc i
in Europe: the Vienna Development Method. A currently ongoing project, RAIJE,

aiming at developing a second generation formal method and related tools s
described.

Finally, ihe use of Ada® is discussed in relation to the application of formal
methods, and the potential for constructing Ada-specific tools based on oo
methods is considered.

® pda is a registered trademark of the U.S. Government
(Ada Joint Program Office)

C.4.1 ORIGINAL PACE IS
OF POCR QUALITY

L A AR

1. Introduction and Background

It is well-known that the increasing use of software systems of an increasingly
complex nature in-~oses greater requirements to the quality of software, its
documentation and maintainability. It is also well-known that since the temm
“"software crisis" emerged, little progress has actually been made in industrial
software development environments towards meeting these requirements.

In this paper, we advocate the viewpoint that industrial software engineering
today really is not engineering, and that real progress is to be sought in the
maturation of present software production technology into a true engineering
discipline,

It is believed that the characteristics of a true engineering discipline are
twofold:

-~ the discipline must have a mathematical foundation
~ the day-to-day practises of the discipline are not necessarily truly formal

This is to be understood in the following way. The requirement €for a mathema-
tical foundation is triggered by the desire to be able to reason about the
objects created during software development (such as specifications, programs,

. and design decisions) in a way that allows one to determine whether any such
reasoning is valid or not; in particular one would like to be able to reason
about the functional correctness of a program with respect to a specification.
On the other hand we believe, 1in particular when one considers industrial
software development, that such formal reasoning will mainly take place in order
to establish ("once and for all") general rules and techniques whose correctness
and soundness are verifiable. On a day-to-day basis there is presently no hope
that development of any but trivial (small) programs can be thoroughly
reasoned about in a formal way: the combinatorial complexity is simply too high.
Thus we advocate the daily use of rules and techniques whose formal
correctness and soundness have previously been established.

This is well in accordance with the way established engineering disciplines
work. For example, electronics engineering has a rather firm basis in
mathematics (e.g.: the use of complex calculus to describe quosi-stationary
circuitry) and makes heavy use of various formal notations (such as diagrams,
being a language with a precise, mathematical meaning (and a graphical syntax)).
In daily life, the electronics engineer goes about his job mainly on the basis
of previously established design principles, without considering the formal
proofs of their soundness. However, from time to time, it is necessary to bring
in formality, to make mathematical analysis and conduct proofs. This typically
Lappens when a conpletely new sort of circuitry is being considered, or when
requirements to circulitry functionality and reliability are particularly strict.

d c.4.2
' ORIQINAL PROE 'S
OF POCR OUALITY

Here it is worth noting that only the fact that electronics engineering has a
mathematical basis makes this pogsible; it would not have worked to base daily
practises on informal notions, and then bring in formality from time to time,

The analogy offers another interesting observation: there seems to be ftwo
different styles of work involved: one style is based on using sound development
rules, another on formally analysing (e.g.: proving the correctness of) an
otherwise constructed object (such as the design of an electronic circuitry). We
shall return to this dichotomy.

It is not surprising that software development has not yet evolved into a true
engineering discipline. The trade is relatively young, and the requirements to
the (complexity of the) software systems to be produced are ever increasing.
Mathematics and formality has, though, been successfully applied to varinous
aspects of software development. The availability of BNF grammars and parse
generators is the classical, convincing example,

The scene 1is, however, beginning to change. In Europe, information techrioloqgy
industry in general demonstrates a growing interest for formal specification arc:
design languages, for formal development rules, and for formal verificaticor.
techniques. This, we believe, is in contrast to the trends in U.S. informatior.
technology industries, where the emphasis appears to be on tools, workstaticne,
and environments, rather than on the methods they should support.

The purpose of this paper 1is to outline current trends in Europe. Givern tiw-
space av- ilable, it is impossible to give a complete and covering picture, lot
alone to go into much technical detail. It is hoped, however, that the material
presented will stimulate discussions on introducing formal methods into indu-
strial software engineering environments.

In section 2, an overall scenario is presented, and a number of relevant
research and development projects are mentioned. In section 3, an account
give 1 of the so-called Vienna Development Method (VDM), which was the firs
purportedly formal method to reach any industcial significance, despite its
shortcomings. In section 4, an account is given of the RAISE project, whoue
explicit objective 1is to provide formal languages and techniques for softwar:-
engineering (in the above sense) as well as support tools. Finally, in scect:.:.
5, perspectives specifically concerned with Ada are discussed.

ORIGINAL PAGE 15

- ITY
c.4.3 OF POOR QUAL

LRRE RO AT

2. The European Scene

Although there has been same industrial interest in formal software development
methods in the European information technology industry over the past decade,
and even a few successful attempts to seriously apply such methods on “real"
projects, formal software development methods have had no pervasive impact.
There has been a distinct, and partially well-founded, belief that formal
methods were not sufficiently industrialized. Also there has been an assumption
that formal methods probably were not worthwhile to apply or even harmful.

However, rfcrwmal methods are now beginning to come about in industrialized form,
and it is becaming increasingly clear to industry that software development
practises must be seriously improved if the potential and challenges offered by
the continuous hardware technology evolution are to be met.

Also, Eurcpean academe has a strong tradition for research in the formal methods

area, and there is today a strong desire to transfer the acquired knowledge and
expertise to industry.

Probably, the most visible evidence of this trend is the joint industrial and
academe support of and participation in projects, concerned with formal methods,
sponsored by the Camission of the European Communities (CEC). It is interesting

. to note that these projects typically involve cooperation between some four to
six partners, industries as well as universities,

In order to give an idea of the range of activities and institutions involved we
list a number of projects, totalling several hundred person years of effort,
sponsored under the ESPRIT program (ESPRIT 86} (European Strategic Programme for
Research and development in Information Technology). For each project, name,
title, and participants are indicated:

FORMAST
Formal Methods for Asynchronous Systems Technology
Advanced System Architectures (United Kingdom)
Erno (West Germany)

Imperial College (United Kingdom)
Univerrity of Kaiserlautern (West Germany)

GRASPIN
Personal Workstation for Incremental Graphical Specification
ard Formal Implementation of Non-Sequential Systems
QD (West Germany)
Olivetti (Italy)
Siemens (West Germany)

PROSPECTRA
Program Development by Specification and Transformation
University of Bremen (West Germany)
University of Saarland (West Germany)

C.4.4
ORIGINAL PAGE IS
OF POOR QUALITY

Systeam KG (West Germany)

University of Dortmund (West Germany)
Syseca Logiciel (France,

University of Passau (West Germany)
University of Stratchclyde (United Kingdom)

RAISE
Rigorous Approach to Industrial Software Engineering
Dansk Datamatik Center (Denmark)
Standard Telephone and Cables (United Kingdam)
Nordic Brown Boveri (Denmark)
International Camputers Limited (United Kingdom)

METEOR
An Integrated Formal Approach to Industrial Software Development

Philips (Netherlands)
CGE (France)
AT-T & Philips (Belgium)
Stichting Matematish Centrum (Netherlands)
COPS Europe (Ireland)
Tech. Software Telematica (Italy)
University of Passau (West Germany)

GENESIS
A General Environment for Formal Systems Develcpment
Imperial Software Technology (United Kingdom)
Imperial College (United Kingdom)
Philips (Netherlands)

It is not within the scope of this paper to eliborate on the actual contents of
the individual projects. However, section 4 describes one of the projects
(RAISE) in more detail. Another major project that should be mentioned is the
Munich CIP project carried out at the Technical University of Munich
[Bauer 76, CIP 85]).

In Europe, the interest in formal methods appears to concentrate more on formal
specification and formal development than on verification. That is, there is &
belief in the transformational programming paradigm: if an implementation is
produced solely by applying a series of transformations, each of which are
correctness-preserving, to an initial specification, the implementation will
necessarily be correct with respect to the initial specification, thus eliminat-
ing the need for wverification. The interest in this style of development is
connected with two concerns: firstly, it tends to eliminate an early
introduction of (design) errors, and secondly, recording the series ot
transformations applied produces invaluable documentation of the system design

process.

C.4.5 ORIGINAL PACE ¢
OF POOR QUALITY

Nbdpmar A

N R R RO evomes srsavne oo

3. The Vienna Development Method (VDM)

VDM originated in the IBM Vienna Laboratories in the early seventies and was
developed in connection with a project aimed at developing a production quality
PL/I compiler. The project group initially worked on giving a formal semantics
for PL/I; this effort probably constitutes the first example of successfully
applying formal techniques to a fairly large-scale problem in an industrial
environment (Bekic 74].

During the late seventies, VDM was further develcped, and an increasing number
of development projects using VDM emerged. Areas in which VDM was applied
comprised not only programming languages and campilers, but also databases,
operating systems, hardware specification, business applications, etc.

(Bjerner 83) contains an overview of VDM basics and an extensive bibliography.
(Bjerner 82] contains numerous major examples of VDM specifications.

Today, there 1is a rather pervasive interest in VDM in Europe, as witnessed by

the formation of "VDM Europe", an interest group sponsored by the CEC and

drawing participants fram a fairly substantial number of European industries and

universities, and by the formation of an industrial panel in the United Kingdem

working towards making the VDM specification language into a British
"I’ Standard.

Technically, VDM is Dpased on the techniques developed for giving denotaticna:
semantics of programming languages. A denotational semantics is given as a
homomorphism from an algebra of syntactic objects to an algebra of semantic
cbjects, or, somewhat simplified, maps pieces of syntax onto semantic objects
such as state transformations (functions from states to states). The principle
readily adapts to numerous applications: many systems may conveniently be
characterised by a state, which is manipulated by operations. Names of opera-
tions and their arguments are then considered to be syntactic dbjects.

VDM is wmodel-oriented. By this 1is meant that the objects (syntactic and
semantic) are explicitly constructed in terms of given constructors such as
sets, lists, maps, and functions. This 1is in contrast to property-oriented
specification approaches, such as algrebraic specification approaches, where
objects are defined implicitly by the equational rules for the operations that
ranipulates them,

It is strongly believed that this aspect of VDM has been crucial for larger
applications, and for the acceptability of VDM in industrial environments:
model-oriented specifications tend to appeal much more to software engineering
intuition than does property-oriented specifications. On the other hand it also
clear that a model-oriented specification methodology may easily be abused to
produce very operational "specifications" and presents a prevalent danger of
over-specification.

o 0.8

ORIGINAL PAGE pg
OF POOR QUALITY

-

4. The RAISE Project

The RAISE project (Rigorous Approach to Industrial Software Engineering) is a
115 person-year effort undertaken by a consortium congisting of Dansk Datamatik
Center and Nordic Brown Boveri (Denmark), and Standard Telephone and Cables
p.l.c. and International Computers Limited (United Kingdom). The project s
partially funded by the Commission of the European Communities under the ESPRIT
programme, and is carried out in the period 1985 to 1989. An overview of the
RAISE project is given in [Meiling 85].

The RAISE project will provide an environment consisting of

- a wide spectrum language in which one can express abstract, formal specifi-
cations, designs, and algorithms

- means for expressing and affecting transformations of such entities

- proof systems and techniques serving to verify the correctness of such
transformations

- a comprehensive tool set

Also, the project has been designed to include production of educaticria.,
training and technology transfer material alongside with the development of 7
above.

In RAISE, Rigorous hints at the underlying dogma that, although the RAISE lan-
guage is formally defined and in principle enables the user to proceed stri:t i
formally in developiny a software system, practical conditions and requireie:.”
force one to choose, pragmatically, to carry out various parts of a devel.: -
ment with varying degrees of formality. The philosophy behind the design of t:.
RAISE tool set is to facilitate such a working style rather than to force a use:
into unmanageable formality.

RAISE encourages development by application of correctness preserving trans: @ -
mations, and allows for the development and verification of such transto:o-
tions. The choice of using a specifically designed wide spectrun lanr: ..
implies that most of a development can be carried out independently ot :
perspective implementation language: only a final step in a develcpment w:'..
carry a detailed, operational design into code. Typically, the code ¢
software system will therefore not exploit all the bells and whistles o1 10,
implementation language; indeed, it is hoped that only rather well-ichaved
systems will then result.

In RAISE, Industrial hints not only at the above-mentioned pragmatic choices
that should be catered for, but also at truly quality tools and man-mach:inc
interfaces, usability of methodologies for "“real" software systems, including
the ability to obtain efficient end-products. In order to ensure conformance
with these requirements, the project has been designed to include a numbe:

Industrial trials, 1i.e. applications of (intermediate versions of) langua.es,
methods and tools during the course of the project: such industrial trials arc
to take place in actual industrial project:s not otherwise connected with RAISEH,

ORIGINAL PAGE 1t
OF POOR QUALITY

5. Some Future Perspectives

At present, it is fair to say that the industrial use of formal methods in
Europe is beginning to happen. There is, though, still a long way to go. The
major obstacles we are facing are:

- insufficient matureness of formal methods
lack of management awareness

lack of educational material and capacity
lack of tools

A nurmber of projects have been mentioned which attempt to seriously work towards
more mature formal methods, keeping the more pragmatic requirements to the po-
tential for industrial usage in focus. These projects were designed to bring out
the best of earlier formal methods, combined with the most recent advances in
research. It is believed that the next 2 to 5 years will bring about radical
progress.

By the term "management awareness™ we primarily think about first and second
level managers' willingness to allow or force formal methods to be introduced
into projects and divisions. The present, rather widespread conservatism is well
understandable: although a number of successful projects having employed formal
methods can be identified, it 1is, in all fairness, characteristic for such
projects that they have been carried out in particularly friendly envir-
onments. Will formal methods actually port to "real" industrial environments?

The most important part of the answer, we believe, 's reflected in our next
concern.

Availability of educational material and sufficient well-qualified personnel to
aid in the introduction of new technology are invariably a major concern in any
situation of evolution, and indeed also for the introduction of formal methods.
However, we beleive that availability of text books, workshops, and courses 13
not sufficient. It appears to be a general experience that the introduction ot
formal methods should happeri (1) in connection with a real project, (2} L«
preceeded bty intense education (not just training), and (3} -- crucially -- e
supported by on-project consultancy provided by experienced practitioners.

For the moment, few tools supporting formal methods are available. So, basically
experiences today have been painstakingly acquired using paper and pencil. And
scepticists may reasonably ask whether one can have more confidence in formal
specifications and designs not checked by tools than in programs not checked by
a compiler. Nevertheless, projects based on 3 levels of paper-and-puencil
description (specification, high-level and low-level designs) preceeding the
implementation have proved to come up with rather startling net productivity
figures and low error rates. With really good tools, we should be able to do
even better. It is important to us, however, that method design, understanding
and experience: preceed the construction of tools.

C.4.8

ORIGINAL PAGE IS
OF POOR QUALITY

. e ——————

The Perspective for Ada and Formal Methods

Ada is prabably one of the most complicated programming languages ever designed.
The complexity is clearly witnessed by the immense amount of resources that has

been required to bring about a reasonably debugged reference manual, compilers,
and so on.

The camplexity mainly stems from the rather large number of language concepts
and features and, in particular, their general interaction. An often-noted
problem is, as an example, that concurrency (tasking) interfere with the
semantics of otherwise well-understood constructs such as function calls in &
rather non-transparent way: the effect of tasking is not clearly bound to the
syntax of Ada. It is to be feared that the complexity of Ada may impart a
serious threat on the ability to construct and maintain correct and reliable
software systems. With the widespread acceptance of Ada as the preferred
programming language for military and space applications it is more urgent tharn
ever to be seriocus about true engineering techniques and tools that will enable
industrial construction of correct and reliable software.

We believe that there are two (camplementary) lines of development to be
pursued: adoption of the transformational programming paradigm, and providirj
usable techniques and tools for analysis (including verification) of progrars.
These two lines will praobably be effective at different points in time: althouyn
powerful transformational programming systems are currently being developed, it
will invariably take some time before such systems come into widespread use --
hence there is an extremely urgent need for providing tools that can assist 1irn
analysing Ada programs having been produced by more traditional techniques.

If such tools are to be of an interesting quality they must be based on a formal
understanding of Ada. It is hoped that the campletion of the Draft Formal
Definition of Ada [Hansen 86) will provide the necessary foundation.

ORIQINAL PACE 15
OF POOR QUALITY
C.4.9

6. References

(Bauer 76)

(Bekic 74}

[Bjormer 82}

[Bjerner 83)

[CIP 85)

[ESPRIT 86]

[Hansen 86]

{Jones 80)

[Meiling 85]

F.L. Bauver: "Programming as an Evoluticnary Process": in:
Lecture Notes in Computer Science, Vol. 46, Springer Verlag ,
1976

H. Bekic et.al.: "A Formal Definition of a PL/I Subset";
IEM Vienna Laboratories TR25.139, December 1974

D. Bjorner & C.B. Jones: "Formal Specification and Software
Development®; Prentice-Hall International Series in Camputer
Science, 1982

D. Bjomer & S. Prehn: "“Software Engineering Aspects of VIwM';
in: D. Ferrari et.al. (eds.): "Theory and Practice of Software
Technology", North-Holland Publishing Campany 1983

F.L. Bauer et.al.: "The Munich Project CIP - Volume I: The
Wide Spectrum Language CIP-L"; Lecture Notes in Computer
Science, Vol. 183, Springer Verlag ,1985

WESPRIT Project Synopses, Software Technology": Commission of
the European Communities, January 1986

K.W. Hansen: "Structuring the Formal Definition of Ada";
these proceedings

C.B. Jones: "Software Development - A Rigorous Approach";
Prentice-Hall International Series in Computer Science, 1980

E. Meiling et.al.: "RAISE Project: Fundamental Issues and
Requirements"; RAISE/DDC/EM1/v6, 1985-12-10; Dansk Datamatik
Center, 1965

ORIGINAL PAGE IS
OF POOR QUALITY

C.4.10

